Close

Lubyani ta tekhnichni kultury

 Vol.6 (11), 2018

ISSN 2307–6429

DOI: 10.48096/btc.2018.6(11).21-28

INDUCTION OF CALUSOGENESIS IN A TECHNICAL (INDUSTRIAL) HEMP IN IN VITRO

 Mishchenko Serhiy
Institute of Bast Crops NAAS

Summary

Separate elements of a technique for introducing hemp into an in vitro culture have been developed. The best option for inducing calusogenesis in technical (industrial) hemp among the studied genotypes in vitro is Murashige and Skoog medium with the addition of 0,5 or 0,3 mg/l 2,4-D, 0,3 mg/l KIN, 0,5 mg/l GA3, vitamins B1, B6, C and 30 g/l sucrose. In this embodiment, the frequency of calusogenesis was 88,5–100%, the formation of green callus with meristematic zones was observed in 73,1–76,5% of the hypocotyl segments, and in some cases organogenesis (shoot formation) also occurred.

Keywords:

industrial hemp, in vitro, variety, phytohormones

Language of the article

Ukrainian

References:

Musiienko M. M. & Paniuta O. O. (2005). Biotekhnolohiia roslyn. Kyiv, 2005. 114 s. (ukr)
Lata H., Chandra S., Techen N. et al. (2016) In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants. 2016. Vol. 3, Iss. 1. P. 18–26. DOI: 10.1016/j.jarmap.2015.12.001
Lata H., Chandra S., Khan I. et al. (2009) Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cellular & Developmental Biology-Plant. Vol. 45, Iss. 1. P. 12–19. DOI: 10.1007/s11627-008-9167-5
Grulichova M., Mendel P., Lalge A. B. et al. (2017) Effect of different phytohormones on growth and development of micropropagated Cannabis sativa L. MendelNet: Proceedings of 24th International PhD Students Conference (November 8 and 9, 2017, Brno, Czech Republic). P. 618–623.
Wróbel T., Dreger M., Wielgus K. et al. (2018) The application of plant in vitro cultures in cannabinoid production. Biotechnology Lettes. Vol. 40, Iss. 3. P. 445–454. DOI: 10.1007/s10529-017-2492-1
Wielgus K., Luwanska A., Lassocinski W. et al. (2008) Estimation of Cannabis sativa L. tissue culture conditions essential for callus induction and plant regeneration. Journal of Natural Fibers. Vol. 5, Iss. 3. P. 199–207. DOI: 10.1080/15440470801976045
Ślusarkiewicz-Jarzina A., Ponitka A. & Kaczmarek Z. (2005) Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biologica Cracoviensia. Series Botanica. Vol. 47, Iss. 2. P. 145–151.
Thacker X., Thomas K., Fuller M. et al. (20018) Determination of optimal hormone and mineral salts levels in tissue culture media for callus induction and growth of industrial hemp (Cannabis sativa L.). Agricultural Sciences. Vol. 09, Iss. 10. P. 1250–1268. DOI: 10.4236/as.2018.910088
Chaohua C., Gonggu Z. & Lining Z. et al. (2016) A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Industrial Crops and Products. Vol. 83. P. 61–65. DOI: 10.1016/j.indcrop.2015.12.035
 Zwenger S. R. (2014) The biotechnology of Cannabis sativa. New York. 249 p.
Murashige T. & Skoog F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. Vol. 15, Iss. 3. P. 473–497. DOI: 10.1111/j.1399‑3054.1962.tb08052.x
Gamborg O. L. & Eveleigh D. E. (1968) Culture methods and detection of glucanases in suspension cultures of wheat and barley. Canadian Journal of Biochemistry. Vol. 46, Iss. 5. P. 417–421.
White P. R. (1943) A handbook of plant tissue culture. New York. 277 p.

Published:

November 2018

Online:

02.03.2020